
ar
X

iv
:1

90
7.

06
90

2v
3

 [
cs

.I
R

]
 1

6
A

ug
 2

01
9

Are We Really Making Much Progress? A Worrying Analysis of
Recent Neural Recommendation Approaches

Maurizio Ferrari Dacrema
Politecnico di Milano, Italy
maurizio.ferrari@polimi.it

Paolo Cremonesi
Politecnico di Milano, Italy
paolo.cremonesi@polimi.it

Dietmar Jannach
University of Klagenfurt, Austria

dietmar.jannach@aau.at

ABSTRACT

Deep learning techniques have become the method of choice for

researchers working on algorithmic aspects of recommender sys-

tems. With the strongly increased interest in machine learning in

general, it has, as a result, become difficult to keep track of what

represents the state-of-the-art at the moment, e.g., for top-n rec-

ommendation tasks. At the same time, several recent publications

point out problems in today’s research practice in applied machine

learning, e.g., in terms of the reproducibility of the results or the

choice of the baselines when proposing new models.

In this work, we report the results of a systematic analysis of al-

gorithmic proposals for top-n recommendation tasks. Specifically,

we considered 18 algorithms that were presented at top-level re-

search conferences in the last years. Only 7 of them could be re-

produced with reasonable effort. For these methods, it however

turned out that 6 of them can often be outperformed with compa-

rably simple heuristic methods, e.g., based on nearest-neighbor or

graph-based techniques. The remaining one clearly outperformed

the baselines but did not consistently outperform awell-tuned non-

neural linear ranking method. Overall, our work sheds light on a

number of potential problems in today’s machine learning schol-

arship and calls for improved scientific practices in this area.

CCS CONCEPTS

• Information systems→Collaborative filtering;Recommender

systems; • General and reference→ Evaluation.

KEYWORDS

Recommender Systems; Deep Learning; Evaluation; Reproducibil-

ity

ACM Reference Format:

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019.

Are We Really Making Much Progress? A Worrying Analysis of Recent

Neural Recommendation Approaches. In Thirteenth ACM Conference on

Recommender Systems (RecSys ’19), September 16–20, 2019, Copenhagen, Den-

mark.ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3298689.3347058

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6243-6/19/09. . . $15.00
https://doi.org/10.1145/3298689.3347058

1 INTRODUCTION

Within only a few years, deep learning techniques have started to

dominate the landscape of algorithmic research in recommender

systems. Novel methods were proposed for a variety of settings

and algorithmic tasks, including top-n recommendation based on

long-term preference profiles or for session-based recommenda-

tion scenarios [36]. Given the increased interest in machine learn-

ing in general, the corresponding number of recent research publi-

cations, and the success of deep learning techniques in other fields

like vision or language processing, one could expect that substan-

tial progress resulted from these works also in the field of recom-

mender systems. However, indications exist in other application

areas of machine learning that the achieved progress—measured

in terms of accuracy improvements over existing models—is not

always as strong as expected.

Lin [25], for example, discusses two recent neural approaches

in the field of information retrieval that were published at top-

level conferences. His analysis reveals that the new methods do

not significantly outperform existing baseline methodswhen these

are carefully tuned. In the context of recommender systems, an in-

depth analysis presented in [29] shows that even a very recent neu-

ral method for session-based recommendation can, in most cases,

be outperformed by very simple methods based, e.g., on nearest-

neighbor techniques. Generally, questions regarding the true progress

that is achieved in such applied machine learning settings are not

new, nor tied to research based on deep learning. Already in 2009,

Armstrong et al. [2] concluded from an analysis in the context of

ad-hoc retrieval tasks that, despite many papers being published,

the reported improvements “don’t add up”.

Different factors contribute to such phenomena, including (i)

weak baselines; (ii) establishment of weak methods as new base-

lines; and (iii) difficulties in comparing or reproducing results across

papers. One first problem lies in the choice of the baselines that

are used in the comparisons. Sometimes, baselines are chosen that

are too weak in general for the given task and dataset, and some-

times the baselines are not properly fine-tuned. Other times, base-

lines are chosen from the same family as the newly proposed algo-

rithm, e.g., when a new deep learning algorithm is compared only

against other deep learning baselines. This behaviour enforces the

propagation of weak baselines. When previous deep learning algo-

rithms were evaluated against too weak baselines, the new deep

learning algorithm will not necessarily improve over strong non-

neural baselines. Furthermore, with the constant flow of papers

being published in recent years, keeping track of what represents

a state-of-the-art baseline becomes increasingly challenging.

Besides issues related to the baselines, an additional challenge is

that researchers use various types of datasets, evaluation protocols,

performancemeasures, and data preprocessing steps, whichmakes

http://arxiv.org/abs/1907.06902v3
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach

it difficult to conclude which method is the best across different ap-

plication scenarios. This is in particular problematic when source

code and data are not shared.Whilewe observe an increasing trend

that researchers publish the source code of their algorithms, this

is not the common rule today even for top-level publication out-

lets. And even in cases when the code is published, it is sometimes

incomplete and, for instance, does not include the code for data pre-

processing, parameter tuning, or the exact evaluation procedures,

as pointed out also in [15].

Finally, another general problem might lie in today’s research

practice in applied machine learning in general. Several “troubling

trends” are discussed in [27], including the thinness of reviewer

pools or misaligned incentives for authors that might stimulate

certain types of research. Earlier work [46] also discusses the com-

munity’s focus on abstract accuracy measures or the narrow focus

of machine learning research in terms of what is “publishable” at

top publication outlets.

With this research work, our goal is to shed light on the ques-

tion if the problems reported above also exist in the domain of

deep learning-based recommendation algorithms. Specifically, we

address two main research questions:

(1) Reproducibility: Towhat extent is recent research in the area

reproducible (with reasonable effort)?

(2) Progress: To what extent are recent algorithms actually lead-

ing to better performance results when compared to rela-

tively simple, but well-tuned, baseline methods?

To answer these questions, we conducted a systematic study in

which we analyzed research papers that proposed new algorith-

mic approaches for top-n recommendation tasks using deep learn-

ing methods. To that purpose, we scanned the recent conference

proceedings of KDD, SIGIR, TheWebConf (WWW), and RecSys for

corresponding research works. We identified 18 relevant papers.

In a first step, we tried to reproduce the results reported in the

paper for those cases where the source codewas made available by

the authors and where we had access to the data used in the exper-

iments. In the end, we could reproduce the published results with

an acceptable degree of certainty for only 7 papers. A first contribu-

tion of our work is therefore an assessment of the reproducibility

level of current research in the area.

In the second part of our study, we re-executed the experiments

reported in the original papers, but also included additional base-

line methods in the comparison. Specifically, we used heuristic

methods based on user-based and item-based nearest neighbors as

well as two variants of a simple graph-based approach. Our study,

to some surprise, revealed that in the large majority of the investi-

gated cases (6 out of 7) the proposed deep learning techniques did

not consistently outperform the simple, but fine-tuned, baseline

methods. In one case, even a non-personalized method that rec-

ommends the most popular items to everyone was the best one in

terms of certain accuracymeasures. Our second contribution there-

fore lies in the identification of a potentially more far-reaching

problem related to current research practices in machine learning.

The paper is organized as follows. Next, in Section 2, we de-

scribe our researchmethod and howwe reproduced existing works.

The results of re-executing the experiments while including addi-

tional baselines are provided in Section 3. We finally discuss the

implications of our research in Section 4.

2 RESEARCH METHOD

2.1 Collecting Reproducible Papers

To make sure that our work is not only based on individual exam-

ples of recently published research, we systematically scanned the

proceedings of scientific conferences for relevant long papers in a

manual process. Specifically, we included long papers in our analy-

sis that appeared between 2015 and 2018 in the following four con-

ference series: KDD, SIGIR, TheWebConf (WWW), and RecSys.1

We considered a paper to be relevant if it (a) proposed a deep learn-

ing based technique and (b) focused on the top-n recommendation

problem. Papers on other recommendation tasks, e.g., group rec-

ommendation or session-based recommendation, were not consid-

ered in our analysis. Given our interest in top-n recommendation,

we considered only papers that used for evaluation classification or

ranking metrics, such as Precision, Recall, MAP. After this screen-

ing process, we ended up with a collection of 18 relevant papers.

In a next step, we tried to reproduce2 the results reported in

these papers. Our approach to reproducibility is to rely as much as

possible on the artifacts provided by the authors themselves, i.e.,

their source code and the data used in the experiments. In theory,

it should be possible to reproduce published results using only the

technical descriptions in the papers. In reality, there are, however

many tiny details regarding the implementation of the algorithms

and the evaluation procedure, e.g., regarding data splitting, that

can have an impact on the experiment outcomes [39].

We therefore tried to obtain the code and the data for all rele-

vant papers from the authors. In case these artifacts were not al-

ready publicly provided, we contacted all authors of the papers and

waited 30 days for a response. In the end, we considered a paper

to be reproducible, if the following conditions were met:

• Aworking version of the source code is available or the code

only has to be modified in minimal ways to work correctly.3

• At least one dataset used in the original paper is available. A

further requirement here is that either the originally-used

train-test splits are publicly available or that they can be

reconstructed based on the information in the paper.

Otherwise, we consider a paper to be non-reproducible given

our specific reproduction approach. Note that we also considered

works to be non-reproducible when the source codewas published

but contained only a skeleton version of themodelwithmany parts

and details missing. Concerning the datasets, research based solely

on non-public data owned by companies or data that was gathered

in some form from the web but not shared publicly, was also not

considered reproducible.

The fraction of papers that were reproducible according to our

relatively strict criteria per conference series are shown in Table 1.

1All of the conferences are either considered A* in the Australian Core Ranking or
specifically dedicated to research in recommender systems.
2Precisely speaking, we used a mix of replication and reproduction [12, 35], i.e., we
used both artifacts provided by the authors and our own artifacts. For the sake of
readability, we will only use the term “reproducibility” in this paper.
3We did not apply modifications to the core algorithms.

Are We Really Making Much Progress? RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Table 1: Reproducible works on deep learning algorithms

for top-n recommendation per conference series from 2015

to 2018.

Conference Rep. ratio Reproducible

KDD 3/4 (75%) [17], [23], [48]

RecSys 1/7 (14%) [53]

SIGIR 1/3 (30%) [10]

WWW 2/4 (50%) [14], [24]

Total 7/18 (39%)

Non-reproducible: KDD: [43], RecSys: [41], [6], [38],

[44], [21], [45], SIGIR: [32], [7], WWW: [42], [11]

Overall, we could reproduce only about one third of the works,

which confirms previous discussions about limited reproducibility,

see, e.g., [3]. The sample size is too small to make reliable con-

clusions regarding the difference between conference series. The

detailed statistics per year—not shown here for space reasons—

however indicate that the reproducibility rate increased over the

years.

2.2 Evaluation Methodology

MeasurementMethod. The validation of the progress that is achieved

through new methods against a set of baselines can be done in at

least two ways. One is to evaluate all considered methods within

the same defined environment, using the same datasets and the ex-

act same evaluation procedure for all algorithms as done in [29].

While such an approach helps us obtain a picture of how differ-

ent methods compare across datasets, the implemented evaluation

proceduremight be slightly different from the one used in the orig-

inal papers. As such, this approach would not allow us to exactly

reproduce what has been originally reported, which is the goal in

this present work.

In this work, we therefore reproduce the work by refactoring

the original implementations in a way that allows us to apply the

same evaluation procedure that was used in the original papers.

Specifically, refactoring is done in a way that the original code

for training, hyper-parameter optimization and prediction are sep-

arated from the evaluation code. This evaluation code is then also

used for the baselines.

For all reproduced algorithms considered in the individual ex-

periments, we used the optimal hyper-parameters that were re-

ported by the authors in the original papers for each dataset. This

is appropriate because we used the same datasets, algorithm im-

plementation, and evaluation procedure as in the original papers.4

We share all the code and data used in our experiments as well as

details of the final algorithm (hyper-)parameters of our baselines

along with the full experiment results online. 5

Baselines. We considered the following baseline methods in our

experiments, all of which are conceptually simple.

4We will re-run parameter optimization for the reproduced algorithms as part of our
future work in order to validate the parameter optimization procedures used by the
authors. This step was, however, outside the scope of our current work.
5https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

TopPopular: A non-personalized method that recommends the

most popular items to everyone. Popularity is measured by the

number of explicit or implicit ratings.

ItemKNN: A traditional Collaborative-Filtering (CF) approach based

onk-nearest-neighborhood (KNN) and item-item similarities [49].

We used the cosine similarity si j between items i and j computed

as

si j =
ri · rj

‖ri ‖‖rj ‖ + h
(1)

where vectors ri , rj ∈ R |U | represent the implicit ratings of a

user for items i and j, respectively, and |U | is the number of users.

Ratings can be optionally weighted either with TF-IDF or BM25,

as described in [50]. Furthermore the similarity may or not be

normalized via the product of vector norms. Parameter h (the

shrink term) is used to lower the similarity between items having

only few interactions [5]. The other parameter of the method is

the neighborhood size k .

UserKNN: Aneighborhood-basedmethodusing collaborativeuser-

user similarities. Hyper-parameters are the same as used for ItemKNN

[40].

ItemKNN-CBF: Aneighborhood content-based-filtering (CBF) ap-

proach with item similarities computed by using item content

features (attributes)

si j =
fi · fj

‖fi ‖‖fj ‖ + h
(2)

where vectors fi , fj ∈ R
|F | describe the features of items i and j,

respectively, and |F | is the number of features. Features can be op-

tionally weighted either with TF-IDF or BM25. Other parameters

are the same used for ItemKNN [28].

ItemKNN-CFCBF: A hybrid CF+CFB algorithm based on item-

item similarities. The similarity is computed by first concatenat-

ing, for each item i , the vector of ratings and the vector of features

– [ri ,wfi] – and by later computing the cosine similarity between

the concatenated vectors. Hyper-parameters are the same used

for ItemKNN, plus a parameter w that weights the content fea-

tures with respect to the ratings.

P3α : A simple graph-based algorithmwhich implements a random

walk between users and items [8]. Items for user u are ranked

based on the probability of a random walk with three steps start-

ing from user u . The probabilitypui to jump from user u to item i

is computed from the implicit user-rating-matrix aspui = (rui/Nu)
α ,

where rui is the rating of user u on item i , Nu is the number of

ratings of user u and α is a damping factor. The probabilitypiu to

jump backward is computed as piu = (rui/Ni)
α , where Ni is the

number of ratings for item i . The method is equivalent to a KNN

item-based CF algorithm, with the similarity matrix defined as

si j =
∑

v

pjvpvi (3)

The parameters of the method are the numbers of neighbors k

and the value of α . We include this algorithm because it provides

good recommendation quality at a low computational cost.

RP3β : A version of P3α proposed in [34]. Here, the outcomes of

P3α are modified by dividing the similarities by each item’s popu-

larity raised to the power of a coefficient β . If β is 0, the algorithm

https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach

is equivalent to P3α . Its parameters are the numbers of neighbors

k and the values for α and β .

For all baseline algorithms and datasets, we determined the op-

timal parameters via Bayesian search [1] using the implementa-

tion of Scikit-Optimize6. We explored 35 cases for each algorithm,

where the first 5 were used for the initial random points. We con-

sidered neighborhood sizes k from 5 to 800; the shrink term h was

between 0 and 1000; and α and β took real values between 0 and 2.

3 VALIDATION AGAINST BASELINES

This section summarizes the results of comparing the reproducible

works with the described baseline methods. We share the detailed

statistics, results, and final parameters online.

3.1 Collaborative Memory Networks (CMN)

The CMN method was presented at SIGIR ’18 and combines mem-

ory networks and neural attention mechanisms with latent factor

and neighborhood models [10]. To evaluate their approach, the au-

thors compare it with different matrix factorization and neural rec-

ommendation approaches as well as with an ItemKNN algorithm

(with no shrinkage). Three datasets are used for evaluation: Epin-

ions, CiteULike-a, and Pinterest. Optimal hyper-parameters for the

proposed method are reported, but no information is provided on

how the baselines are tuned. Hit rate and NDCG are the perfor-

mance measures used in a leave-one-out procedure. The reported

results show that CMNs outperform all other baselines on all mea-

sures.

Wewere able to reproduce their experiments for all their datasets.

For our additional experiments with the simple baselines, we op-

timized the parameters of our baselines for the hit rate (HR@5)

metric. The results for the three datasets are shown in Table 2.

Our analysis shows that, after optimization of the baselines, CMN7

is in no single case the best-performing method on any of the

datasets. For the CiteULike-a and Pinterest datasets, at least two

of the personalized baseline techniques outperformed the CMN

method on any measure. Often, even all personalized baselines

were better than CMN. For the Epinions dataset, to some surprise,

the unpersonalized TopPopularmethod,which was not included in

the original paper, was better than all other algorithms by a large

margin. On this dataset, CMN was indeed much better than our

baselines. The success of CMN on this comparably small and very

sparse dataset with about 660k observations could therefore be tied

to the particularities of the dataset or to a popularity bias of CMN.

An analysis reveals that the Epinions dataset has indeed a much

more uneven popularity distribution than the other datasets (Gini

index of 0.69 vs. 0.37 for CiteULike-a). For this dataset, CMN also

recommends in its top-n lists items that are, on average, 8% to 25%

more popular than the items recommended by our baselines.

6https://scikit-optimize.github.io/
7We report the results for CMN-3 as the version with the best results.

Table 2: Experimental results for theCMNmethod using the

metrics and cutoffs reported in the original paper. Numbers

are printed in bold when they correspond to the best result

or when a baseline outperformed CMN.

CiteULike-a

HR@5 NDCG@5 HR@10 NDCG@10

TopPopular 0.1803 0.1220 0.2783 0.1535

UserKNN 0.8213 0.7033 0.8935 0.7268

ItemKNN 0.8116 0.6939 0.8878 0.7187

P3α 0.8202 0.7061 0.8901 0.7289

RP3β 0.8226 0.7114 0.8941 0.7347

CMN 0.8069 0.6666 0.8910 0.6942

Pinterest

HR@5 NDCG@5 HR@10 NDCG@10

TopPopular 0.1668 0.1066 0.2745 0.1411

UserKNN 0.6886 0.4936 0.8527 0.5470

ItemKNN 0.6966 0.4994 0.8647 0.5542

P3α 0.6871 0.4935 0.8449 0.5450

RP3β 0.7018 0.5041 0.8644 0.5571

CMN 0.6872 0.4883 0.8549 0.5430

Epinions

HR@5 NDCG@5 HR@10 NDCG@10

TopPopular 0.5429 0.4153 0.6644 0.4547

UserKNN 0.3506 0.2983 0.3922 0.3117

ItemKNN 0.3821 0.3165 0.4372 0.3343

P3α 0.3510 0.2989 0.3891 0.3112

RP3β 0.3511 0.2980 0.3892 0.3103

CMN 0.4195 0.3346 0.4953 0.3592

3.2 Metapath based Context for
RECommendation (MCRec)

MCRec [17], presented at KDD ’18, is a meta-path basedmodel that

leverages auxiliary information like movie genres for top-n recom-

mendation. From a technical perspective, the authors propose a

priority-based sampling technique to select higher-quality path in-

stances and propose a novel co-attention mechanism to improve

the representations of meta-path based context, users, and items.

The authors benchmark four variants of their method against a

variety of models of different complexity on three small datasets

(MovieLens100k, LastFm, and Yelp). The evaluation is done by cre-

ating 80/20 random training-test splits and by executing 10 of such

evaluation runs. The evaluation procedure could be reproduced;

public training-test splits were provided only for the MovieLens

dataset. For the MF and NeuMF [14] baselines used in their pa-

per, the architecture and hyper-parameters were taken from the

original papers; no information about hyper-parameter tuning is

provided for the other baselines. Precision, Recall, and the NDCG

are used as performance measures, with a recommendation list of

length 10. The NDCG measure is however implemented in an un-

common and questionable way, which is not mentioned in the pa-

per. Here, we therefore use a standard version of the NDCG.

https://scikit-optimize.github.io/

Are We Really Making Much Progress? RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

In the publicly shared software, the meta-paths are hard-coded

for MovieLens, and no code for preprocessing and constructing the

meta-paths is provided. Here, we therefore only provide the results

for the MovieLens dataset in detail. We optimized our baselines for

Precision, as was apparently done in [17]. For MCRec, the results

for the complete model are reported.

Table 3: Comparing MCRec against our baselines (Movie-

Lens100k)

PREC@10 REC@10 NDCG@10

TopPopular 0.1907 0.1180 0.1361

UserKNN 0.2913 0.1802 0.2055

ItemKNN 0.3327 0.2199 0.2603

P3α 0.2137 0.1585 0.1838

RP3β 0.2357 0.1684 0.1923

MCRec 0.3077 0.2061 0.2363

Table 3 shows that the traditional ItemKNN method, when con-

figured correctly, outperformsMCRec on all performancemeasures.

Besides the use of an uncommon NDCG measure, we found

other potentialmethodological issues in this paper.Hyper-parameters

for theMF andNeuMF baselines were, as mentioned, not optimized

for the given datasets but taken from the original paper [17]. In

addition, looking at the provided source code, it can be seen that

the authors report the best results of their method for each metric

across different epochs chosen on the test set, which is inappropri-

ate.8

3.3 Collaborative Variational Autoencoder
(CVAE)

The CVAE method [23], presented at KDD ’18, is a hybrid tech-

nique that considers both content as well as rating information.

The model learns deep latent representations from content data

in an unsupervised manner and also learns implicit relationships

between items and users from both content and ratings.

The method is evaluated on two comparably small CiteULike

datasets (135k and 205k interactions). For both datasets, a sparse

and a dense version is tested. The baselines in [23] include three

recent deep learning models and as well as Collaborative Topic Re-

gression (CTR). The parameters for each method are tuned based

on a validation set. Recall at different list lengths (50 to 300) is

used as an evaluation measure. Random train-test data splitting is

applied and the measurements are repeated five times.

We could reproduce their results using their code and evalua-

tion procedure. The datasets are also shared by the authors. Fine-

tuning our baselines led to the results shown in Table 4 for the

dense CiteULike-a dataset from [47]. For the shortest list length

of 50, even the majority of the pure CF baselines outperformed

the CVAE method on this dataset. At longer list lengths, the hy-

brid ItemKNN-CFCBF method led to the best results. Similar results

were obtained for the sparse CiteULike-t dataset. Generally, at list

length 50, ItemKNN-CFCBF was consistently outperforming CVAE

8In our evaluations, we did not use this form of measurement.

Table 4: Experimental results for CVAE (CiteULike-a).

REC@50 REC@100 REC@300

TopPopular 0.0044 0.0081 0.0258

UserKNN 0.0683 0.1016 0.1685

ItemKNN 0.0788 0.1153 0.1823

P3α 0.0788 0.1151 0.1784

RP3β 0.0811 0.1184 0.1799

ItemKNN-CFCBF 0.1837 0.2777 0.4486

CVAE 0.0772 0.1548 0.3602

in all tested configurations. Only at longer list lengths (100 and be-

yond), CVAE was able to outperform our methods on two datasets.

Overall, CVAE was only favorable over the baselines in certain

configurations and at comparably long and rather uncommon rec-

ommendation cutoff thresholds. The use of such long list sizes was

however not justified in the paper.

3.4 Collaborative Deep Learning (CDL)

The discussed CVAE method considers the earlier and often-cited

CDL method [48] from KDD ’15 as one of their baselines, and

the authors also use the same evaluation procedure and CiteULike

datasets. CDL is a probabilistic feed-forward model for joint learn-

ing of stacked denoising autoencoders (SDAE) and collaborative

filtering. It applies deep learning techniques to jointly learn a deep

representation of content information and collaborative informa-

tion. The evaluation of CDL in [48] showed that it is favorable in

particular compared to the widely referenced CTR method [47],

especially in sparse data situations.

Table 5: Experimental results for CDL on the dense

CiteULike-a dataset.

REC@50 REC@100 REC@300

TopPopular 0.0038 0.0073 0.0258

UserKNN 0.0685 0.1028 0.1710

ItemKNN 0.0846 0.1213 0.1861

P3α 0.0718 0.1079 0.1777

RP3β 0.0800 0.1167 0.1815

ItemKNN-CBF 0.2135 0.3038 0.4707

ItemKNN-CFCBF 0.1945 0.2896 0.4620

CDL 0.0543 0.1035 0.2627

We reproduced the research in [48], leading to the results shown

in Table 5 for the dense CiteULike-a dataset. Not surprisingly, the

baselines that were better than CVAE in the previous section are

also better than CDL, and again for short list lengths, already the

pureCFmethodswere better than the hybrid CDLapproach. Again,

however, CDL leads to higher Recall for list lengths beyond 100 in

two out of four dataset configurations. Comparing the detailed re-

sults for CVAE and CDL, we see that the newer CVAE method is

indeed always better than CDL, which indicates that progress was

made. Both methods, however, are not better than one of the sim-

ple baselines in the majority of the cases.

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach

3.5 Neural Collaborative Filtering (NCF)

Neural network-based Collaborative Filtering [14], presented at

WWW ’17, generalizes Matrix Factorization by replacing the in-

ner product with a neural architecture that can learn an arbitrary

function from the data. The proposed hybrid method (NeuMF) was

evaluated on two datasets (MovieLens1M and Pinterest), contain-

ing 1 million and 1.5 million interactions, respectively. A leave-one

out procedure is used in the evaluation and the original data splits

are publicly shared by the authors. Their results show that NeuMF

is favorable, e.g., over existing matrix factorization models, when

using the hit rate and the NDCG as an evaluation measure using

different list lengths up to 10.

Parameter optimization is done on a validation set created from

the training set. Similar to the implementation ofMCRec above, the

provided source code shows that the authors chose the number of

epochs based on the results obtained for the test set. Since the num-

ber of epochs, however, is a parameter to tune and should not be

determined based on the test set, we use a more appropriate im-

plementation that finds this parameter with the validation set. For

the ItemKNN method, the authors only varied the neighborhood

sizes but did not test other variations.

Table 6: Experimental results for NCF.

Pinterest

HR@5 NDCG@5 HR@10 NDCG@10

TopPopular 0.1663 0.1065 0.2744 0.1412

UserKNN 0.7001 0.5033 0.8610 0.5557

ItemKNN 0.7100 0.5092 0.8744 0.5629

P3α 0.7008 0.5018 0.8667 0.5559

RP3β 0.7105 0.5116 0.8740 0.5650

NeuMF 0.7024 0.4983 0.8719 0.5536

Movielens 1M

HR@5 NDCG@5 HR@10 NDCG@10

TopPopular 0.3043 0.2062 0.4531 0.2542

UserKNN 0.4916 0.3328 0.6705 0.3908

ItemKNN 0.4829 0.3328 0.6596 0.3900

P3α 0.4811 0.3331 0.6464 0.3867

RP3β 0.4922 0.3409 0.6715 0.3991

NeuMF 0.5486 0.3840 0.7120 0.4369

SLIM 0.5589 0.3961 0.7161 0.4470

Given the publicly shared information, we could reproduce the

results from [14]. The outcomes of the experiment are shown in

Table 6. On the Pinterest dataset, two of the personalized baselines

were better than NeuMF on all metrics. For the MovieLens dataset,

NeuMF outperformed our simple baselines quite clearly.

Since the MovieLens dataset has been extensively used over the

last decades for evaluating new models, we made additional ex-

periments with SLIM, a simple linear method described in [33]. To

implement SLIM, we took the standard Elastic Net implementation

provided in the scikit-learn package for Python (ElasticNet). To

tune the hyper-parameters on the validation set, we considered

neighborhood sizes as in the other baselines; the ratio of l1 and l2

regularization between 10−5 and 1.0; and the regularization magni-

tude coefficient between 10−3 and 1.0. Table 6 shows that SLIM is

indeed better than our baselines, as expected, but also outperforms

NeuMF on this dataset.

3.6 Spectral Collaborative Filtering
(SpectralCF)

SpectralCF [53], presented at RecSys ’18, was designed to specif-

ically address the cold-start problem and is based on concepts of

Spectral Graph Theory. Its recommendations are based on the bi-

partite user-item relationship graph and a novel convolution op-

eration, which is used to make collaborative recommendations di-

rectly in the spectral domain. The method was evaluated on three

public datasets (MovieLens1M, HetRec, andAmazon Instant Video)

and benchmarked against a variety of methods, including recent

neural approaches and established factorization and ranking tech-

niques. The evaluationwas based on randomly created 80/20 training-

test splits and using Recall and the Mean Average Precision (MAP)

at different cutoffs.9

For theMovieLens dataset, the training and test datasets used by

the authorswere shared alongwith the code. For the other datasets,

the data splits were not published therefore we created the splits

by ourself following the descriptions in the paper.

Somehow surprisingly, the authors report only one set of hyper-

parameter values in the paper, which they apparently used for all

datasets. We therefore ran the code both with the provided hyper-

parameters and with hyper-parameter settings that we determined

by our own on all datasets. For the HetRec and Amazon Instant

Video datasets, all our baselines, to our surprise also including

the TopPoular method, outperformed SpectralCF on all measures.

However, when running the code on the provided MovieLens data

splits, we found that SpectralCF was better than all our baselines

by a huge margin. Recall@20 was, for example, 50% higher than

our best baseline.

We therefore analyzed the published train-test split for theMovie-

Lens dataset and observed that the popularity distribution of the

items in the test set is very different from a distribution that would

likely result from a random sampling procedure.10 We then ran ex-

periments with our own train-test splits also for the MovieLens

dataset, using the splitting procedure described in the paper. We

optimized the parameters for our data split to ensure a fair com-

parison. The results of the experiment are shown in Table 7. When

using data splits that were created as described in the original pa-

per, the results for the MovieLens dataset are in line with our own

experiments for the other two datasets, i.e., SpectralCF in all con-

figurations performed worse than our baseline methods and was

outperformed even by the TopPopular method.

Figure 1 visualizes the data splitting problem. The blue data

points show the normalized popularity values for each item in the

training set, with the most popular item in the corresponding split

having the value 1, ordered by decreasing popularity values. In

case of random sampling of ratings, the orange points from the

9To assess the cold-start behavior, additional experiments are performed with fewer
data points per user in the training set.
10We contacted the authors on this issue, but did not receive an explanation for this
phenomenon.

Are We Really Making Much Progress? RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Table 7: Experimental results for SpectralCF (MovieLens1M,

using own random splits and five repeated measurements).

Cutoff 20 Cutoff 60 Cutoff 100

REC MAP REC MAP REC MAP

TopPopular 0.1853 0.0576 0.3335 0.0659 0.4244 0.0696

UserKNN CF 0.2881 0.1106 0.4780 0.1238 0.5790 0.1290

ItemKNN CF 0.2819 0.1059 0.4712 0.1190 0.5737 0.1243

P3α 0.2853 0.1051 0.4808 0.1195 0.5760 0.1248

RP3β 0.2910 0.1088 0.4882 0.1233 0.5884 0.1288

SpectralCF 0.1843 0.0539 0.3274 0.0618 0.4254 0.0656

test set would mostly be very close to the corresponding blue ones.

Here, however, we see that the popularity values of many items

in the test set differ largely. An analysis of the distributions with

measures like the Gini index or Shannon entropy confirms that the

dataset characteristics of the shared test set diverge largely from a

random split. The Gini index of a true random split lies at around

0.79 for both the training and test split. While the Gini index for

the provided training split is similar to ours, the Gini index of the

provided test split is much higher (0.92), which means that the dis-

tribution has a much higher popularity bias than a random split.

0 500 1000 1500 2000 2500 3000 3500

Items

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze
d
n
u
m
b
er

o
f
in
te
ra
ct
io
n
s

Training data

Test data

Figure 1: Popularity distributions of the provided training

and test splits. In case of a random split, the normalized val-

ues should, on average, be close for both splits.

3.7 Variational Autoencoders for Collaborative
Filtering (Mult-VAE)

Mult-VAE [24] is a collaborative filtering method for implicit feed-

back based on variational autoencoders. The work was presented

at WWW ’18. With Mult-VAE, the authors introduce a generative

model with multinomial likelihood, propose a different regular-

ization parameter for the learning objective, and use Bayesian in-

ference for parameter estimation. They evaluate their method on

three binarized datasets that originally contain movie ratings or

song play counts. The baselines in the experiments include both a

matrix factorization method from 2008 [18], a linear model from

2011 [33], and a more recent neural method [51]. Accoring to the

reported experiments, the proposed method leads to accuracy re-

sults that are typically around 3% better than the best baseline in

terms of Recall and the NDCG.

Using their code and datasets, we found that the proposedmethod

indeed consistently outperforms our quite simple baseline tech-

niques. The obtained accuracy results were between 10% and 20%

better than our best baseline. Thus, with Mult-VAE, we found one

example in the examined literature where a more complex method

was better, by a large margin, than any of our baseline techniques

in all configurations.

To validate that Mult-VAE is advantageous over the complex

non-neural models, as reported in [24], we optimized the parame-

ters for the weighted matrix factorization technique [18] and the

linear model [33] (SLIM using Elastic Net) for the MovieLens and

Netflix datasets by ourselves. We made the following observations.

For both datasets, we could reproduce the results and observe im-

provements over SLIM of up to 5% on the different measures re-

ported in the original papers. Table 8 shows the outcomes for the

Netflix datasets using the measurements and cutoffs from the orig-

inal experiments after optimizing for NDCG@100 as in [24].

Table 8: Experimental results forMult-VAE (Netflix data), us-

ing metrics and cutoffs reported in the original paper.

REC@20 REC@50 NDCG@100

TopPop 0.0782 0.1643 0.1570

ItemKNN CF 0.2088 0.3386 0.3086

P3α 0.1977 0.3346 0.2967

RP3β 0.2196 0.3560 0.3246

SLIM 0.2551 0.3995 0.3745

Mult-VAE 0.2626 0.4138 0.3756

The differences between Mult-VAE and SLIM in terms of the

NDCG, the optimization goal, are quite small. In terms of the Recall,

however, Mult-VAE improvements over SLIM seem solid. Since

the choice of the used cutoffs (20 and 50 for Recall, and 100 for

NDCG) is not very consistent in [24], we made additional mea-

surements at different cutoff lengths. The results are provided in

Table 9. They show that when using the NDCG as an optimiza-

tion goal and as a performance measure, the differences between

SLIM andMult-VAE disappear on this dataset, and SLIM is actually

sometimes slightly better. A similar phenomenon can be observed

for the MovieLens dataset. In this particular case, therefore, the

progress that is achieved through the neural approach is only par-

tial and depends on the chosen evaluation measure.

Table 9: Experimental results for Mult-VAE using additional

cutoff lengths for the Netflix dataset.

NDCG@20 NDCG@50 REC@100 NDCG@100

SLIM 0.2473 0.3196 0.5289 0.3745

Mult-VAE 0.2448 0.3192 0.5476 0.3756

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach

4 DISCUSSION

4.1 Reproducibility and Scalability

In someways, establishing reproducibility in appliedmachine learn-

ing should be much easier than in other scientific disciplines and

also other subfields of computer science. While many recommen-

dation algorithms are not fully deterministic, e.g., because they use

some form of random initialization of parameters, the variability

of the obtained results when repeating the exact same experiment

configuration several times is probably very low in most cases.

Therefore, when researchers provide their code and the used data,

everyone should be able to reproduce more or less the exact same

results. Given that researchers today often rely on software that is

publicly available or provided by academic institutions, the barri-

ers regarding technological requirements are mostly low as well.

In particular, virtualization technology should make it easier for

other researchers to repeat an experiment under very similar con-

ditions.

Nonetheless, our work shows that the level of reproducibility

is actually not high. The code of the core algorithms seems to be

more often shared by researchers than in the past, probably also

due to the fact that reproducibility has become an evaluation crite-

rion for conferences. However, in many cases, the code that is used

for hyper-parameter optimization, evaluation, data pre-processing,

and for the baselines is not shared. This makes it difficult for others

to validate the reported findings.

One orthogonal factor that can make reproducibility challeng-

ing is the computational complexity ofmany of the proposedmeth-

ods. Ten years after the Netflix Prize and its 100 million rating

dataset, researchers, in the year 2019, commonly use datasets con-

taining only a few hundred thousand ratings. Even for such tiny

datasets, which were considered unacceptably small a few years

ago, hyper-parameter optimization can take days or weeks, even

when researchers have access to GPU computing. Clearly, nearest-

neighbor methods, as discussed in our paper, can also lead to scal-

ability issues. However, with appropriate data pre-processing and

data samplingmechanisms, scalability can also be ensured for such

methods, both in academic and industrial environments [19, 26].

4.2 Progress Assessment

Despite their computational complexity, our analysis showed that

several recently proposed neural methods do not even outperform

conceptually or computationally simpler, sometimes long-known,

algorithms. The level of progress that is achieved in the field of

neural methods is, therefore, unclear, at least when considering

the approaches discussed in our paper.

One main reason for this phantom progress, as our work shows,

lies in the choice of the baselines and the lack of a proper optimiza-

tion of the baselines. In the majority of the investigated cases, not

enough information is given about the optimization of the consid-

ered baselines. Sometimes, we also found that mistakes were made

with respect to data splitting and the implementation of certain

evaluation measures and protocols.

Another interesting observation is that a number of recent pa-

pers use the neural collaborative filtering method (NCF) [14] as

one of their state-of-the-art baselines. According to our analysis,

this method is however outperformed by simple baselines on one

dataset and does not lead to much better results on another, where

it is also outperformed by a standard implementation of a linear re-

gression method. Therefore, progress is often claimed by compar-

ing a complex neural model against another neural model, which

is, however, not necessarily a strong baseline. Similar observations

can be made for the area of session-based recommendation, where

a recent method based on recurrent neural networks [16] is con-

sidered a competitive baseline, even though almost trivial methods

are in most cases better [29, 30].

Another aspect that makes it difficult to assess progress in the

field lies in the variety of datasets, evaluation protocols, metrics,

and baselines that are used by researchers. Regarding datasets, for

example, we found over 20 public datasets that were used, plus sev-

eral variants of the MovieLens and Yelp datasets. As a result, most

datasets are only used in one or two papers. All sorts of metrics are

used (e.g., Precision, Recall, Mean Average Precision, NDCG, MRR

etc.) as well as various evaluation procedures (e.g., randomholdout

80/20, leave-last-out, leave-one-out, 100 negative items or 50 nega-

tive items for each positive). In most cases, however, these choices

are not well justified beyond the fact that others used them before.

In reality, the choice of themetric should depend on the application

context. In some applications, for example, it might be important to

have at least one relevant item at the top of the recommendations,

which suggests the use of rank-based metrics like MRR. In other

domains, high Recall might be more important when the goal is to

show as many relevant items as possible to the user. Besides the

unclear choice of the measure, often also the cutoff sizes for the

measurement are not explained and range from top-3 or top-5 lists

to several hundred elements.

These phenomena are, however, not tied to neural recommen-

dation approaches, but can be found in algorithmic research in rec-

ommender systems also in pre-neural times. Considering the argu-

ments from [27, 46], such developments are fueled by the strong

focus of machine learning researchers on accuracy measures and

the hunt for the “best” model. In our current research practice, it

is often considered sufficient to show that a new method can out-

perform a set of existing algorithms on at least one or two pub-

lic datasets on one or two established accuracy measures.11 The

choice of the evaluation measure and dataset however often seems

arbitrary.

An example of such unclear research practice is the use ofMovie-

Lens rating datasets for the evaluation of algorithms for implicit

feedback datasets. Such practices point to the underlying funda-

mental problem that research is not guided by any hypothesis or

aim at the solution of a given problem. The hunt for better accu-

racy values dominates research activities in this area, even though

it is not even clear if slightly higher accuracy values are relevant in

terms of adding value for recommendation consumers or providers

[20, 22, 52]. In fact, a number of research works exist that indi-

cate that higher accuracy does not necessarily translate into better-

received recommendations [4, 9, 13, 31, 37].

11From the 18 papers considered relevant for our study, there were at least two pa-
pers which proposed new DL architectures which were evaluated on a single private
dataset and for which no source code was provided.

Are We Really Making Much Progress? RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

5 SUMMARY

In this work, we have analyzed a number of recent neural algo-

rithms for top-n recommendation. Our analysis indicates that re-

producing published research is still challenging. Furthermore, it

turned out that most of the reviewed works can be outperformed

at least on some datasets by conceptually and computationally sim-

pler algorithms. Our work therefore calls for more rigor and bet-

ter research practices with respect to the evaluation of algorithmic

contributions in this area.

Our analyses so far are limited to papers published in certain

conference series. In our ongoing and future work, we plan to

extend our analysis to other publication outlets and other types

of recommendation problems. Furthermore, we plan to consider

more traditional algorithms as baselines, e.g., based on matrix fac-

torization.

REFERENCES
[1] S. Antenucci, S. Boglio, E. Chioso, E. Dervishaj, K. Shuwen, T. Scar-

latti, and M. Ferrari Dacrema. 2018. Artist-driven layering and user’s
behaviour impact on recommendations in a playlist continuation sce-
nario. In Proceedings of the ACM Recommender Systems Challenge
2018 (RecSys 2018). https://doi.org/10.1145/3267471.3267475 Source:
https://github.com/MaurizioFD/spotify-recsys-challenge.

[2] Timothy G. Armstrong, Alistair Moffat, WilliamWebber, and Justin Zobel. 2009.
Improvements That Don’t Add Up: Ad-hoc Retrieval Results Since 1998. In Pro-
ceedings CIKM ’09. 601–610.

[3] Joeran Beel, Corinna Breitinger, Stefan Langer, Andreas Lommatzsch, and Bela
Gipp. 2016. Towards reproducibility in recommender-systems research. User
Modeling and User-Adapted Interaction 26, 1 (2016), 69–101.

[4] Jöran Beel and Stefan Langer. 2015. A Comparison of Offline Evaluations, Online
Evaluations, and User Studies in the Context of Research-Paper Recommender
Systems. In Proceedings TPDL ’15. 153–168.

[5] Robert M Bell and Yehuda Koren. 2007. Improved neighborhood-based collabo-
rative filtering. In KDD cup and workshop at the KDD ’07. Citeseer, 7–14.

[6] Homanga Bharadhwaj, Homin Park, and Brian Y. Lim. 2018. RecGAN: Recurrent
Generative Adversarial Networks for Recommendation Systems. In Proceedings
RecSys ’18. 372–376.

[7] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation
with item-and component-level attention. In Proceedings SIGIR ’17. 335–344.

[8] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. 2014. Ran-
dom walks in recommender systems: exact computation and simulations. In Pro-
ceedings WWW ’14. 811–816.

[9] Paolo Cremonesi, Franca Garzotto, and Roberto Turrin. 2012. Investigating the
Persuasion Potential of Recommender Systems from a Quality Perspective: An
Empirical Study. Transactions on Interactive Intelligent Systems 2, 2 (2012), 1–41.

[10] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for
Recommendation Systems. In Proceedings SIGIR ’18. 515–524.

[11] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep
learning approach for cross domain user modeling in recommendation systems.
In Proceedings WWW ’15. 278–288.

[12] Association for Computing Machinery. 2016. Artifact Review and Badging.
Available online at: https://www.acm.org/publications/policies/artifact-review-
badging (Accessed March, 2018).

[13] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Brut-
tin, and Amr Huber. 2014. Offline and Online Evaluation of News Recommender
Systems at Swissinfo.Ch. In Proceedings RecSys ’14. 169–176.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings WWW ’17. 173–182.

[15] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. 2018. Deep Reinforcement Learning That Matters. In Proceed-
ings AAAI ’18. 3207–3214.

[16] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In Pro-
ceedings ICLR ’16.

[17] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveragingmeta-
path based context for top-n recommendation with a neural co-attention model.
In Proceedings KDD ’18. 1531–1540.

[18] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In Proceedings ICDM ’08. 263–272.

[19] Dietmar Jannach and Malte Ludewig. 2017. When Recurrent Neural Networks
Meet the Neighborhood for Session-Based Recommendation. In Proceedings Rec-
Sys ’17. 306–310.

[20] Dietmar Jannach, Paul Resnick, Alexander Tuzhilin, and Markus Zanker. 2016.
Recommender Systems - Beyond Matrix Completion. Commun. ACM 59, 11
(2016), 94–102.

[21] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.
2016. Convolutional Matrix Factorization for Document Context-Aware Recom-
mendation. In Proceedings RecSys ’16. 233–240.

[22] JosephA. Konstan and John Riedl. 2012. Recommender systems: fromalgorithms
to user experience. User Modeling and User-Adapted Interaction 22, 1 (2012), 101–
123.

[23] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for
recommender systems. In Proceedings KDD ’17. 305–314.

[24] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In Proceedings WWW ’18.
689–698.

[25] Jimmy Lin. 2019. The Neural Hype and Comparisons Against Weak Baselines.
SIGIR Forum 52, 2 (Jan. 2019), 40–51.

[26] G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: item-to-
item collaborative filtering. IEEE Internet Computing 7, 1 (2003), 76–80.

[27] Zachary C. Lipton and Jacob Steinhardt. 2018. Troubling Trends in Machine
Learning Scholarship. arXiv:arXiv:1807.03341

[28] Pasquale Lops, MarcoDe Gemmis, and Giovanni Semeraro. 2011. Content-based
recommender systems: State of the art and trends. In Recommender Systems
Handbook. Springer, 73–105.

[29] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-based Rec-
ommendation Algorithms. User-Modeling and User-Adapted Interaction 28, 4–5
(2018), 331–390.

[30] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach.
2019. Performance Comparison of Neural and Non-Neural Ap-
proaches to Session-based Recommendation. In Proceedings RecSys ’19.
https://doi.org/10.1145/3298689.3347041

[31] Andrii Maksai, Florent Garcin, and Boi Faltings. 2015. Predicting Online Perfor-
mance of News Recommender Systems Through Richer Evaluation Metrics. In
Proceedings RecSys ’15. 179–186.

[32] Jarana Manotumruksa, Craig Macdonald, and Iadh Ounis. 2018. A Contextual
Attention Recurrent Architecture for Context-Aware Venue Recommendation.
In Proceedings SIGIR ’18. 555–564.

[33] Xia Ning and George Karypis. 2011. SLIM: Sparse linear methods for top-n rec-
ommender systems. In Proceedings ICDM ’11. 497–506.

[34] Bibek Paudel, Fabian Christoffel, Chris Newell, and Abraham Bernstein. 2017.
Updatable, Accurate, Diverse, and Scalable Recommendations for Interactive Ap-
plications. ACM Transactions on Interactive Intelligent Systems 7, 1 (2017), 1.

[35] Hans Ekkehard Plesser. 2017. Reproducibility vs. Replicability: A Brief History
of a Confused Terminology. Frontiers in Neuroinformatics 11, 76 (2017).

[36] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
Aware Recommender Systems. Comput. Surveys 51, 4 (2018), 1–36.

[37] Marco Rossetti, Fabio Stella, and Markus Zanker. 2016. Contrasting Offline and
Online Results when Evaluating Recommendation Algorithms. In Proceedings
RecSys ’16. 31–34.

[38] Noveen Sachdeva, Kartik Gupta, and Vikram Pudi. 2018. Attentive Neural Archi-
tecture Incorporating Song Features for Music Recommendation. In Proceedings
RecSys ’18. 417–421.

[39] Alan Said and Alejandro Bellogín. 2014. Rival: A Toolkit to Foster Reproducibil-
ity in Recommender System Evaluation. In Proceedings RecSys ’14. 371–372.

[40] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-
based collaborative filtering recommendation algorithms. In Proceedings WWW
’01. 285–295.

[41] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and Chi Xu.
2018. Recurrent Knowledge Graph Embedding for Effective Recommendation.
In Proceedings RecSys ’18. 297–305.

[42] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric learn-
ing via memory-based attention for collaborative ranking. In Proceedings WWW
’18. 729–739.

[43] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Multi-Pointer Co-Attention
Networks for Recommendation. In Proceedings SIGKDD ’18. 2309–2318.

[44] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D Convolutional Networks for
Session-based Recommendation with Content Features. In Proceedings RecSys
’17. 138–146.

[45] FlavianVasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2Vec: Prod-
uct Embeddings Using Side-Information for Recommendation. In Proceedings
RecSys ’16. 225–232.

[46] Kiri Wagstaff. 2012. Machine Learning that Matters. In Proceedings ICML ’12.
529–536.

[47] Chong Wang and David M Blei. 2011. Collaborative topic modeling for recom-
mending scientific articles. In Proceedings KDD ’11. 448–456.

https://doi.org/10.1145/3267471.3267475
https://github.com/MaurizioFD/spotify-recsys-challenge
http://arxiv.org/abs/arXiv:1807.03341
https://doi.org/10.1145/3298689.3347041

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach

[48] HaoWang, NaiyanWang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In Proceedings KDD ’15. 1235–1244.

[49] JunWang, Arjen P De Vries, and Marcel JT Reinders. 2006. Unifying user-based
and item-based collaborative filtering approaches by similarity fusion. In Pro-
ceedings SIGIR ’06. 501–508.

[50] Jun Wang, Stephen Robertson, Arjen P de Vries, and Marcel JT Reinders. 2008.
Probabilistic relevance ranking for collaborative filtering. Information Retrieval
11, 6 (2008), 477–497.

[51] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabo-
rative denoising auto-encoders for top-n recommender systems. In Proceedings
WSDM ’16. 153–162.

[52] Bo Xiao and Izak Benbasat. 2007. E-commerce Product Recommendation Agents:
Use, Characteristics, and Impact. MIS Quarterly 31, 1 (March 2007), 137–209.

[53] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. 2018. Spectral
Collaborative Filtering. In Proceedings RecSys ’18. 311–319.

	Abstract
	1 Introduction
	2 Research Method
	2.1 Collecting Reproducible Papers
	2.2 Evaluation Methodology

	3 Validation Against Baselines
	3.1 Collaborative Memory Networks (CMN)
	3.2 Metapath based Context for RECommendation (MCRec)
	3.3 Collaborative Variational Autoencoder (CVAE)
	3.4 Collaborative Deep Learning (CDL)
	3.5 Neural Collaborative Filtering (NCF)
	3.6 Spectral Collaborative Filtering (SpectralCF)
	3.7 Variational Autoencoders for Collaborative Filtering (Mult-VAE)

	4 Discussion
	4.1 Reproducibility and Scalability
	4.2 Progress Assessment

	5 Summary
	References

